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Abstract On the other hand,  developing  and  testing 

Proposed  missions  to  explore  comets  and  moons will 
encounter  environments  that  are  hostile and unpre- 
dictable.  Any  successful  explorer  must  be  able  to 
adapt  to a wide  range of possible  operating  conditions 
in  order  to  survive.  The  traditional  approach of con- 
structing  special-purpose  control  methods  would  re- 
quire a information  about  the  environment,  which is 
not  available a priori  for  these  missions.  An  alternate 
approach is to utilize a general  control  approach  with 
significant  capability  to  adapt  its  behavior, a so called 
uduptive  problem-solving  methodology.  Using  adap- 
tive  problem-solving, a spacecraft  can  use  reinforce- 
ment  learning  to  adapt  an  environment-specific  search 
strategy  given  the  craft’s  general  problem  solver with 
a flexible  control  architecture. The resulting  meth- 
ods  would enable  the  spacecraft  increase its  perfor- 
mance with  respect  to  probability of survival  and  mis- 
sion  goals. 

Introduction 
Proposed  missions to explore  comets and moons 
will encounter  environments that are hostile and 
unpredictable.  Because of light-time  commu- 
nication delays,  these  missions  require an au- 
tonomous  explorer that can  adapt to handle possi- 
ble  environments. For autonomous  planning sys- 
tems, the high-level actions of the spacecraft must 
be planned with sufficient environmental infor- 
mation  to  ensure  that  the  resulting  plans are ad- 
missible.  Generic  control  methods will not ac- 
count  for  domain-specific  features when operat- 
ing a spacecraft. The spacecraft  could  easily be 
lost  based  on  inappropriate  behavior  for  the par- 
ticular  environment  due to overly-generic control 
methods  (Minton 1996). 

domain-specific control  methods  is  extremely  dif- 
ficult, and requires support of a  domain  expert. 
Moreover, the  domain  expert  must have knowl- 
edge about the  environment in which the  space- 
craft is  operating, which is not available  before 
the spacecraft arrives at the location  to  explore. 
If experts are not available, the  spacecraft  must 
be able  to  automatically  adapt  a  flexible control 
structure specific to the new environment. 
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Adaptive  problem  solving addresses  these  prob- 
lems by enabling  the  development  and  mainte- 
nance of effective control strategies  without ex- 
tensive domain-specific  knowledge. An adaptive 
problem solver is given: (1) a generic  set of con- 
trol strategies and (2) a flexible control  architec- 
ture, and uses a statistical method  to  estimate  the 
quality of each control strategy or generate a more 
appropriate strategy. Adaptive  problem  solving 
also provides hard statistical  guarantees on the 
quality of the  behavior  for  each  adapted control 
method.  Using adaptive problem  solving tech- 
niques,  spacecraft  exploration in unknown envi- 
ronments  becomes  feasible. 

In this paper, we  describe how adaptive  prob- 
lem  solving can be used  to  adapt  the control meth- 
ods of a spacecraft in-situ without  relying on do- 
main expertise. The value of this  method is em- 
pirically shown in the  context of three  spacecraft 
operations  scheduling  problems in a  generic  plan- 
ning and scheduling  environment. By adapting 
control  strategies  for each domain,  the  lifespan 
of the spacecraft is  improved  since  the adaptive 
problem  solver  can  increase  chances of spacecraft 
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survival and continue to update  the  control  meth- 
ods based on aging hardware or environmental 
changes. 

Motivational  Example 
The  comet  lander will land on a surface of un- 
known density, with the goals of drilling into the 
comet 90% and  imaging  its  surroundings 10% 
of the  time  allocated to accomplishing  the goals. 
Many situations will force  these percentages to 
be adapted.  One  scenario  might be that the sur- 
face of the  comet is much denser than expected, 
so the rate of drilling is decreased and the wear 
on the drill is increased. The lander might decide 
to adjust its priorities to taking  more images in- 
stead of drilling.  Another  scenario might be that 
drilling  caused  a layer of dust on the surface to 
drift up,  the  dust  might  limit  the visibility of the 
lander. Taking images  might be ineffective, so the 
lander would  optimally delay its drilling activities 
until the dust settled,  or put off taking images al- 
together. 

Failure to adapt to these situations  could  cost 
the lander  the  mission, by depleting resources too 
rapidly, not accomplishing  mission objectives, or 
wearing out  equipment.  Not all possible  situa- 
tions can be enumerated before the  mission;  in- 
stead an adaptive problem  solver  checks  the cur- 
rent control strategy’s performance in the given 
environment and responds to changes by adapt- 
ing  the  control strategy, independent of the  cause 
of the  change. An adaptive problem solver would 
continually  adapt the control strategy if it found 
the current  strategy  non-optimal. 

Motivation for Adaptive  Problem  Solving 
Evaluating  control  strategies  in a specific environ- 
ment is difficult without information about how 
the  strategies  perform over a  distribution of tasks 
in that environment.  Adaptive  problem  solv- 
ing attempts  to  estimate  the  performance of each 
strategy by collecting  samples of the spacecraft’s 
performance in a particular  domain.  The  con- 
trol strategies  are  represented as sets of heuristics 
for  automated  scheduling so that they may be ro- 
bust enough  to  perform well over the  entire prob- 
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lem distribution even when they are slightly  sub- 
optimal, as opposed to a  single  heuristic which 
may not be as flexible to environment  or hardware 
changes. 

Planning  System 
The  planning and scheduling  system with a flexi- 
ble control architecture used  to  evaluate  the  con- 
trol strategies  for  each  model  is  a version of 
the  ASPEN  (Automated  Scheduling and Plan- 
ning ENvironment)  system  (Fukunaga et al. 
1997). ASPEN is a configurable, generic  plan- 
ning/scheduling application framework  that  can 
be tailored to specific domains  to  create conflict- 
free  plans  or  schedules. 

ASPEN  employs  planning  and  scheduling  tech- 
niques to automatically generate  a necessary ac- 
tivity sequence to achieve the mission goals. This 
sequence  is  produced by utilizing an iterative re- 
pair algorithm (Zweben et al. 1994) which classi- 
fies conflicts and attacks  them  each individually. 
Conflicts occur when a plan constraint has been 
violated where this  constraint  could be temporal 
or involve a  resource,  state  or activity parameter. 
Conflicts are resolved by performing  one  or  more 
schedule modifications such as moving,  adding, 
or  deleting activities at a point  in  the  search where 
a  choice  can be made by the scheduler, called  a 
choice point. The target of the  repair modifica- 
tion is chosen by a  heuristic  method.  For each 
type of choice  point,  there  exists  a different set of 
heuristic methods  to  use in repair which can  be 
modified easily. The set of heuristic  methods  im- 
pacts the  outcome of the  schedule, and effectively 
controls  the behavior of the  spacecraft. 

The quality of a resulting  schedule  generated by 
ASPEN is  measured by a  set of preferences  spec- 
ified  by the user. This  set of preferences  speci- 
fies the quality functions  associated with certain 
metrics in  the  schedule,  such  as  battery power us- 
age or number of science  goals achieved, and  the 
possible cutoffs of the  metric values. Although 
currently the ASPEN system  does not take pref- 
erences into account while it performs iterative 
repair, this is  a  possible  addition to the  heuristics 
in  future  work. 



Figure 1 : Hypothesis  Generation  Diagram 

Adapting  Control  Strategies 
To adapt  control  strategies,  we can search the 
neighborhood of a  current strategy, and rank the 
performance in the new environment using adap- 
tive problem  solving. Given a set of possible 
control  strategies,  the adaptive problem  solver 
selects  the  top strategy or  strategies  based on 
collecting  samples of spacecraft  performance in 
the  current  environment by running ASPEN with 
the  control  strategy  and evaluating the resulting 
schedule. The top  strategies  are returned to the 
search algorithm, which produces the  subsequent 
set of hypotheses  based on the new strategies us- 
ing  algorithm-specific  techniques. The new set of 
strategies is passed  to  the adaptive problem solver 
for  evaluation.  This  cycle  continues until a cer- 
tain amount of time has passed or another stop- 
ping criterion of the specific search algorithm has 
been met  (see  figure 1). 

Adaptive Problem Solving 
The adaptive  problem  solver  attempts  to  select  the 
top  strategies  from  a set of strategies, supplied by 
the search algorithm,  whose quality is  a function 
of unknown  environmental  parameters. It makes 
estimates of the  parameters  for utility of a strat- 
egy and  cost of a  sample  in  order  to achieve a re- 
quested accuracy for  a statistical decision require- 
ment, which is a function of the accuracy of each 
pair-wise comparison of set  members.  The adap- 
tive problem  solver iteratively refines the utility 
and cost  parameter  estimates by acquiring train- 
ing  examples at the  estimated  cost  for each strat- 
egy (see figure 2). 
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Figure 2: Adaptive  Problem  Solving  Diagram 

The normal parametric  model  for  reasoning 
about statistical error  is  used in this  analysis, 
which assumes that the  difference between the  ex- 
pected utility and estimated  utility of a  hypothe- 
sis can be accurately approximated by a normal 
distribution.  This  assumption  is  grounded in the 
Central Limit  Theorem  and  is  further  discussed in 
(Chien et al. 1995). The analysis would change 
given a different parametric  model, but the  results 
should be analogous  for  conventional  models. 

Since  parameter  estimates  are refined by ran- 
dom sampling, it is impossible  to  place perfect ac- 
curacy requirements on the  selection  algorithms. 
In practice,  probabilistic  requirements,  or deci- 
sion criteria, on the relative accuracy of the  pa- 
rameter estimates (and subsequent  strategy  selec- 
tion) are chosen  as  parameterized  forms that al- 
low a tradeoff between accuracy and  cost. 

Specifically, decision  requirements  take  a  set 
of hypotheses and a  probabilistic  error  bound, 
and terminate when one of the  hypotheses can 
be shown to have the  greatest  mean,  evaluated 
through pair-wise  comparisons, with a  confidence 
specified by the given error  bound. The overall 
error  for selection is  a  function of the  error of 
each pair-wise comparison.  Rational  analysis  can 
be  used to allocate  error to each  pairwise  com- 
parison in such a way as to attempt to optimize 
the  resource  usage necessary to acquire  a suffi- 
cient number of samples to achieve  the  decision 
requirement (Chien 1999). 

In this  analysis,  the decision requirement that is 
used in the adaptive problem  solver is the prob- 



ably approximately  correct (PAC) requirement. 
The approach of using adaptive solving with ra- 
tional analysis to evaluate strategies has a natural 
correspondence in other  decision  requirements, 
and  the  choice of using PAC in this analysis is 
mostly based on their prevalence rather than spe- 
cific attributes of the  requirements  themselves. 
An alternative  decision  requirement, the expected 
loss requirement, was evaluated compared with 
the PAC requirement  and  found to have minimal 
impact on the  outcome. 

PAC Requirement 

In order  to  satisfy  the PAC requirement,  the hy- 
pothesis  estimated  to  be  the best must  be within 
some user-specified constant E distance of the  true 
best hypothesis with probability 1 - 6. The  sum 
of the error  from each pair-wise comparison is 
bounded by this probability. Let Hsel be the  ex- 
pected utility of the  selected  hypotheses and HZ 
be the  expected utility for  the  remaining  hypothe- 
ses. Let H be the  estimate of the  expected utility 
of a hypothesis.  It  is sufficient to bound the  prob- 
ability of error in selection  for pair-wise compar- 
isons with the  following  equation: 

Thus  the  problem of bounding the overall error 
reduces to bounding the error of each k - 1 com- 
parisons of the  chosen best hypothesis to the rest 
of the  hypotheses. 

The normality  assumption  reduces  equation I 
to a  function of the  parameter  estimates,  the  num- 
ber of examples n, used to refine the  estimates, 
the  closeness  parameter E ,  and an unknown vari- 
ance term a2. The  two  stopping  criteria for se- 
lection are dominance, which is based on achiev- 
ing a probability (6) through  sampling that hi will 
perform better on a specific problem than hj, and 
indifevence, which is  the probability that the  dif- 
ference  between  performances will fall within E 

of 0. For the rest of this  discussion, E is ignored 
to  simplify  understanding. The equation  for  the 

probability of incorrect  selection  for a pair-wise 
comparison, air is: 

Qz = a) -(Hsel - HZ)" ( &G Jn ) ( 2 )  

We can use this relationship to determine how 
many training examples to allocate  to  each  com- 
parison, given the  error  bound on the probability 
of a mistake, an estimate of the  difference in ex- 
pected utility, and an estimate of the variance of 
each hypothesis: 

n 

Rational  Analysis 
The  hypothesis selection algorithm as presented 
does not take advantage of unequal distribution 
of error. By distributing error  unequally across 
the pair-wise comparisons  using  the  estimates of 
the cost and utility parameters,  we  can  attempt to 
satisfy the  requirements  using  the  minimum  pos- 
sible  cost. The general  idea of rational  analysis 
is to choose  the  error ai for  each  comparison  to 
minimize,  subject  to  the given decision  require- 
ments: 

k-1 

Csel,&el,i 

The algorithm  must only ensure that the sum 
of the  errors  remains less than the given bound. 
If one pair-wise comparison  requires many more 
samples to achieve the  same  amount of accuracy 
as another pair-wise comparison,  then if the first 
comparison  is allowed to have  more  error and 
the second is allowed less,  the overall cost of 
achieving those local requirements  might be re- 
duced. In practice, this  method significantly re- 
duces the number of samples necessary to achieve 
the requirement for certain domains, as shown in 
(Chien 1999). 

i=l 

Adapting  Hypotheses 
In order to adapt hypotheses, search algorithms 
are used to generate  hypotheses  in  the neighbor- 
hood of the given hypotheses.  At  each level of 
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Figure 3: Hypothesis Vector Diagram 

search, an adaptive  problem  solving  algorithm  is 
used  to  evaluate  the  competing  hypotheses with 
a given confidence  bound. We assume that time 
is a  constrained  resource as in (Horvitz 1988; 
Fink 1998), so the  search  algorithms  should  limit 
the  number of search iterations 

Local  Beam  Search 
One  algorithm  used to generate and search over 
hypotheses  is  local  beam search (Russell & 
Norvig 1995). In  a flexible planning  and  schedul- 
ing  domain,  each  hypothesis,  or  combination of 
heuristics, can be  represented as a vector of per- 
centages where the  percentages of heuristics as- 
sociated with a certain type of choice point in 
ASPEN  sum  to  100%  (see figure 3) .  A random 
heuristic  is  included  for  each plan problem.  The 
basic  algorithm  is  included below. 

We chose a neighborhood of a vector to be de- 
fined as, for  each  subset of heuristics associated 
with a certain  choice point, changing  one of the 
usage  percentages  by  a  certain  range,  and  scaling 
all of the  other  usage  percentages  equal amounts 
so that the  sum  is still 100%  (see figure 3) .  Let 
1 be the  bound on the number of hypotheses  the 
adaptive problem  solver can evaluate. 

Genetic  Algorithm 
Another  algorithm that is  used to generate hy- 
potheses  is  a  genetic  algorithm  (Goldberg 1989). 
Each  hypothesis  is  represented  as  a vector of per- 
centages, as in  the  local  beam  search.  The three 
general  operators (crossover, mutation, and re- 
production)  are  used to generate  the next set of 
hypotheses  to search over, and ranking  the hy- 

potheses is done  using adaptive problem  solving. 
The crossover  operator  is not aware of the differ- 
ent  subsets of heuristics,  and may choose to split 
within one of those  subsets.  Mutation  also  works 
without knowledge of the  constraint that subsets 
must sum to loo%), so each subset is scaled to 100 
uniformly after the  mutation  operator  is run. The 
basic algorithm  is shown below. 

Search  Considerations 
In the  context of this paper, both  algorithms  start 
the search with a  set of human  expert derived 
strategies that are  currently in use in the  domain 
model.  This  simulates  the  adaptation of a given 
generic hypothesis as might happen on board a 
spacecraft. If local search is not effective in 
adapting  the  hypotheses sufficiently, non-optimal 
search steps can be made  either by adjusting pa- 
rameters in the search  algorithms  or  lowering  the 
confidence level for  the  decision  requirement. 

Attributes of these  two  different  search  algo- 
rithms allow them  to  perform  in  different ways to 
provide insight into  characteristics of the search 
space.  Whereas  the propagation of a vector in 
local beam search ignores potential dependen- 
cies between different subsets of heuristics,  the 
crossover operation in genetic  algorithms tends 
to propagate  subsets of the  string  based on the 
distance between individual values in the vector, 
known as the  subset's deJning length (Goldberg 
1989). Based on where  the  subsets  for  heuristics 
of different types are located in the vector, the ge- 
netic algorithm may or may not reproduce  them 
as a  set. For this  reason,  genetic  algorithms may 
be superior to local beam searches  for  domains 
where the influences of different  heuristic types 
are dependent. 

Method  Implementation 
An adaptive control  system of this  type  can be 
used in mission operations in multiple  capacities. 
It can be used from  the  start  to  design  the  space- 
craft constraints and payload, by evaluating each 
of the potential designs  against  possible  environ- 
ments and comparing  results. The system can 
be used on the  ground  to perform mission plan- 



~ ning and during flight to quickly develop new 
schedules  based on changing  domains or space- 
craft deterioration. The system might be used on- 
board a spacecraft  to  perform  real-time fault de- 
tection and recovery. Environmental constraints 
for  the  spacecraft,  such as the density or temper- 
ature of the surface  for  a lander, can be deter- 
mined when they are available to the  spacecraft. 
Accurate  constraints are required for operation of 
a  spacecraft in an unknown environment regard- 
less of whether an automated planner is on-board 
the  craft.  These  constraints  can be used to update 
the  on-board  or  ground-based model of the  en- 
vironment,  and adaptive problem  solving can be 
used  to efficiently determine  the  optimal  planning 
heuristics  for  the  current  environment. 

Empirical  Evaluation 
We claim that hypothesis adaptation can effi- 
ciently find a better set of hypotheses in a given 
domain. In this section we provide  evidence that 
in practice,  these  methods  can  generate heuristic 
sets  superior  to  those  generated by model experts. 

The test of real-world applicability is based on 
three domains  related to planned  space missions, 
using  the  ASPEN  planning and scheduling sys- 
tem.  The  original  set of hypotheses that is used 
is the  set of heuristic  combinations currently in 
use in these and related models. We hope this il- 
lustrates how this  type of method can be useful 
in real-world domains, by improving on control 
strategies already in  use,  improving  the  strategies 
during  missions, or updating  the  strategies to han- 
dle  domain  shifts. 

Evaluation 
New Millennium EO-1 Domain - New Mil- 
lennium Earth Observer l (EO-l) is an earth 
imaging  satellite  featuring an advanced multi- 
spectral imaging  device. EO-1 mission opera- 
tions  consists of managing spacecraft operabil- 
ity constraints (power, thermal,  pointing, buffers, 
consumables,  telecommunications,  etc.) and sci- 
ence  goals  (imaging of specific targets within par- 
ticular  observation  parameters). The EO-1  do- 
main models  the  operations of the EO-l oper- 

ations for  a two-day horizon (Sherwood et al. 
1998). It consists of 14 resources, 10 state vari- 
ables and total of 38 different activity types. 
Each EO- 1 problem  instance  includes a randomly 
generated, fixed profile that represents typical 
weather and instrument  pattern.  Each  problem 
also includes 3 to 16 randomly placed instru- 
ment requests  for  observations  and  calibrations, 
and between 50 and 175 communications satel- 
lite  passes. 

The preferences for  EO-1  include preferences 
for  more  calibrations and observations, earlier 
start times for  the  observations,  fewer  solar ar- 
ray and aperture manipulations,  lower  maximum 
value over the  entire horizon for  the  solar array, 
and higher levels of propellant. 

Applying  the  quantile-quantile  (Q-Q)  test  to the 
EO-1 hypotheses shows that they are very likely 
normal distributions.  The  Q-Q  test  compares the 
quantiles of the  samples with a normal distribu- 
tion, and departures in linearity of the  resulting 
plot show how the samples differ from  a normal 
distribution. Results of applying  the  Q-Q test to 
these three domains  are shown in (Chien 1999). 

Figures 4  and  5 show scores of the gener- 
ated heuristic combinations  over 35 cycles of the 
search algorithms.  Although  the  curves  for  the 
scores of the  two different search  algorithms are 
different, the percentage of improvement  for the 
high scoring  hypothesis within each  cycle  is  sim- 
ilar (128% for  the  linear search compared with 
147%  for  the  genetic  algorithm). The percent- 
age improvement  for  the mean score  is  somewhat 
greater, 161%  for  the  genetic  algorithm  compared 
with 116%  for  the  linear  search. The high scor- 
ing heuristic combinations  are  also  somewhat  dif- 
ferent:  the local search hypotheses  use a signifi- 
cantly lower percentage of random  heuristics than 
the genetic algorithm  hypotheses,  illustrating  two 
different local maxima in the search space. 

New  Millennium  Space  Technologies  Four 
Landed  Operations  Domain- The ST-4 do- 
main models  the  landed  operations of a spacecraft 
designed  to land on a comet  and return a sample 
to  earth.  This  model  has  6  shared  resources,  6 
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Figure 4: EO- 1 model  search  iteration  maximum  and aver- 
age  scores  for  35  iterations of the  local  beam  search  (beam 
= a ) ,  using  rational PAC as the  requirement  for  the  adaptive 
problem  solver. 

state  variables,  and 22 activity types. Resources 
and  states  include  battery level, bus power, com- 
munications, orbiter-in-view, drill location, drill 
state, oven states  for  a primary and backup oven 
state,  camera  state,  and RAM. There  are  two ac- 
tivity groups that correspond  to different types of 
experiments:  mining and analyzing  a  sample, and 
taking  a  picture.  Each ST-4 problem  instance  in- 
cludes  a  randomly  generated, fixed profile that 
represents  communications visibility to the orbit- 
ing  spacecraft.  Each  problem  also  includes be- 
tween l and l l mining activities and between l 
and 24 picture  experiments at random start times. 

The preferences  for ST-4 include  more  imag- 
ing,  more  mining,  more battery power over the 
planning  horizon, fewer drill movements, and 
fewer  uplinks. 

Based on the Q-Q test,  hypotheses  from  the ST- 
4  domain are likely to be normally distributed, 
and  thus  provides  a  good  model  for adaptive 
problem  solving  (Chien  1999).  Graph 6 shows 
the  mean  and  high  scores  of  the generated heuris- 
tic combinations  over 25 cycles of the search 
algorithms.  Although  the indifference ratio for 
the PAC algorithm  is  three  times  higher than for 
rover, the  score rises significantly from  the  start- 
ing vector. The high  score reaches a  maximum 
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Figure  5: EO- 1 model  search  iteration  maximum  and  aver- 
age  scores  for  35  iterations of the  genetic  algorithm  search, 
using  rational PAC as  the  requirement  for  the  adaptive  prob- 
lem  solver. 

improvement of 14%, and  the mean score has a 
maximum  improvement of 18%. 

Rocky-7  Mars  Rover Domain - Rocky-7 is 
a  prototype Mars rover for  long-range planetary 
science  gathering. The rover domain  models op- 
erations of a  prototype rover for  a typical Martian 
day (Rabideau 1999). It consists of  18 shared re- 
sources, 12 state variables and 32 activity types. 
Resources and  states  include  cameras  (front, rear, 
mast),  mast, shovel, spectrometer,  solar array, 
battery, and  RAM.  There are three activity types 
that correspond to different  types of science  ex- 
periments:  digging at a  location,  collecting  a 
spectrometer reading from  target,  and  taking an 
image  from  a location (panorama,  front,  rear). 
Rover problems  are  constructed by generating be- 
tween l to 12 experiments  and randomly generat- 
ing parameters for  the  experiments (such as target 
locations).  Heuristics  include traveling salesman 
heuristics which attempt to order  the rover moves 
such that the  total  distance traveled is  minimized. 

Rocky-7 preferences include  preferences  for 
more  science activities and earlier  start  times  for 
those activities, less traversing and  earlier  start 
times for traversals, less battery usage,  fewer  mast 
manipulations, and less  time  that  the mast is de- 
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Figure 6: ST-4 model  current  iteration  maximum  and  aver- 
age  scores  for 30 genetic  algorithm  generations,  using  ratio- 
nal PAC as the  requirement  for  the  adaptive  problem solver. 

ployed over the  planning  horizon. 
Figure  7  shows  the  scores of the generated 

heuristic  combinations over 40 cycles of the 
search algorithms. 

The hypotheses in the  Rocky-7  domain appear 
to  come  from  a non-normally distributed distribu- 
tion compared  to both EO-1 and ST-4, as  shown 
by applying  the Q-Q test  to the original hypoth- 
esis  (Chien  1999). The adaptive problem solver 
decision  requirement  assumes  a normal distribu- 
tion,  and  the  Rocky-7  results  illustrates  the  prob- 
lem with violating this assumption. Violating 
the  assumption of normality leads to evaluations 
which cannot  provide  strong statistical guarantees 
as to their accuracy. Over all the search itera- 
tions,  the  greatest  improvement in the max scores 
lOl%~, and the  greatest  improvement in the mean 
score is lOl%, although  the accuracy of the eval- 
uations is  not guaranteed  because of the violated 
normality assumption. 

Related Work 

Evaluating  control  strategies  is a growing re- 
search topic.  Horvitz  originally described a 
method  for  evaluating  algorithms based on a  cost 
versus quality tradeoff (Horvitz  1988). Russell, 
Subramanian, and Parr used  dynamic  program- 
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Figure 7:  Rocky-7  model  highest  maximum  and  search it- 
eration  average  scores  for 40 iterations of the  local  beam 
search,  using  rational PAC as the  requirement  for  the  adap- 
tive problem  solver. 

ming  to rationally select  among a set of control 
strategies by estimating  utility (which includes 
cost)  (Russell et al. 1993). The MULTI-TAC sys- 
tem  considers all k-wise combinations of heuris- 
tics for  solving a CSP in its  evaluation which also 
avoids problems with local maxima, but at a large 
expense  to  the search (Minton  1996).  Fink de- 
scribes a method that sets  time  bounds  for se- 
lection as opposed to parameter  estimation ac- 
curacy, since  sampling  time  is not large  enough 
to attempt  to  minimize  the  number of samples 
(Fink 1998). Previous articles  describing adaptive 
problem  solving have developed  general  meth- 
ods have been developed for  transforming  a  stan- 
dard problem  solver  into an adaptive one(Gratch 
& DeJong 1992; 1996),  illustrated  the applica- 
tion of adaptive problem  solving to real world 
scheduling  problems (Gratch & DeJong  1996), 
and showed how adaptive problem  solving can 
be cast as a  resource allocation problem (Chien 
1999). We expand on these  topics by evaluat- 
ing different methods  for  generating  hypotheses 
which can be used in adaptive problem  solving to 
efficiently estimate  their utility and  cost,  consid- 
ered separately. 



Future  Work 
In the  area of adaptive  problem  solving, addi- 
tional work has  been  proposed for the  stopping 
criteria,  which  can  be  resource  bounded (specif- 
ically, time  as  a  resource)  instead of a relaxation 
of the  ranking  requirement,  as  in previous works 
on similar  topics  (Fink  1998). Different meth- 
ods of combining  heuristics  could be applied to 
problems of this  type.  One method is  compos- 
ite  strategies,  from  operations  research, which in- 
volve logical  decisions  about  the relative usage of 
heuristics as opposed  to  statistical  methods. An- 
other  method  is  a  portfolio  approach, which com- 
bines  heuristics  in  a  method  similar to a financial 
portfolio. 

Current  results do not indicate any direct bene- 
fit to  using  either  local  beam search or genetic al- 
gorithms  over  the alternative. In order to predict 
an effective  search  algorithm  for  each environ- 
ment, it would  be  useful to generate  a  landscape 
of the  utilities  for  the  hypothesis  space (Wolpert 
1996).  Previous work has been done in de- 
terministic  landscape  generation (Wolpert 1996; 
Whitley  1995), but no practical work has been 
done  in  stochastic  landscape  generation, which is 
what  this  domain  requires. 

More  intelligent  methods of searching over the 
space of hypotheses  could  be  exploited in this do- 
main. It is not clear that all of the model domains 
are continuous, so a  further study of the  shape of 
the  domain  should  precede  the  choice of a search 
method. At a  lower level, changing  the mutation 
operators in the  current  algorithms, such as inten- 
tionally weighting  one  heuristic heavily out of all 
of the  heuristics  for  a  choice  point, may direct the 
search more efficiently. 

Conclusions 
This  paper  outlines different methods  for adapt- 
ing  control  strategies  using adaptive problem 
solving, with the goal of finding a  control strategy 
or  set of control  strategies that performs well in 
the given planning and scheduling environment. 
The purpose  is  validated in all three  planning and 
scheduling  domains, by showing significant over- 
all  improvement  in  the  generated  plans.  Empiri- 

cally, it appears that these  methods  could be used 
in a  mission  operations  environment  to  generate 
and evaluate  a  domain-specific  set of heuristics 
to  control  automated  planning  and  scheduling,  ei- 
ther  on-  or off-board the  spacecraft.  These  results 
are significant in showing that autonomous  space- 
craft planning and scheduling  is  becoming  a re- 
alistic option  for  missions  to unknown environ- 
ments. 
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